Characterizing Cardiac Molecular Mechanisms of Mammalian Hibernation via Quantitative Proteogenomics.
نویسندگان
چکیده
This study uses advanced proteogenomic approaches in a nonmodel organism to elucidate cardioprotective mechanisms used during mammalian hibernation. Mammalian hibernation is characterized by drastic reductions in body temperature, heart rate, metabolism, and oxygen consumption. These changes pose significant challenges to the physiology of hibernators, especially for the heart, which maintains function throughout the extreme conditions, resembling ischemia and reperfusion. To identify novel cardioadaptive strategies, we merged large-scale RNA-seq data with large-scale iTRAQ-based proteomic data in heart tissue from 13-lined ground squirrels (Ictidomys tridecemlineatus) throughout the circannual cycle. Protein identification and data analysis were run through Galaxy-P, a new multiomic data analysis platform enabling effective integration of RNA-seq and MS/MS proteomic data. Galaxy-P uses flexible, modular workflows that combine customized sequence database searching and iTRAQ quantification to identify novel ground squirrel-specific protein sequences and provide insight into molecular mechanisms of hibernation. This study allowed for the quantification of 2007 identified cardiac proteins, including over 350 peptide sequences derived from previously uncharacterized protein products. Identification of these peptides allows for improved genomic annotation of this nonmodel organism, as well as identification of potential splice variants, mutations, and genome reorganizations that provides insights into novel cardioprotective mechanisms used during hibernation.
منابع مشابه
Proteomic mechanisms of cardioprotection during mammalian hibernation in woodchucks, Marmota monax.
Mammalian hibernation is a unique strategy for winter survival in response to limited food supply and harsh climate, which includes resistance to cardiac arrhythmias. We previously found that hibernating woodchucks (Marmota monax) exhibit natural resistance to Ca2+ overload-related cardiac dysfunction and nitric oxide (NO)-dependent vasodilation, which maintains myocardial blood flow during hib...
متن کاملProteogenomic Analysis of a Hibernating Mammal Indicates Contribution of Skeletal Muscle Physiology to the Hibernation Phenotype.
Mammalian hibernation is a strategy employed by many species to survive fluctuations in resource availability and environmental conditions. Hibernating mammals endure conditions of dramatically depressed heart rate, body temperature, and oxygen consumption yet do not show the typical pathological response. Because of the high abundance and metabolic cost of skeletal muscle, not only must it adj...
متن کاملGene Expression and Protein Adaptations in Mammalian Hibernation
An understanding of the protein adaptations that support mammalian hibernation is coming from several different approaches. New studies in my lab are (a) using cDNA library screening to identify genes that are up-regulated in hibernation, (b) analyzing the role of reversible protein phosphorylation in the control of membrane ion pumps in torpor, (c) assessing temperature-dependent properties of...
متن کاملMolecular and Metabolic Aspects of Mammalian Hibernation - Expression of the hibernation phenotype results from the coordinated regulation of multiple physiological and molecular events during preparation for and entry into torpor
713 eat seeds from cones and are too large to use the subnivian space; for these animals, winter can be a long season without foraging opportunities, and they have therefore evolved the ability to pass winter by while in a torpid state of lethargy. A highly regulated sequence of physiological events beginning months in advance of winter coordinates entrance into the suspended state of animation...
متن کاملMammalian hibernation: differential gene expression and novel application of epigenetic controls.
This review highlights current information about the regulatory mechanisms that govern gene expression during mammalian hibernation, in particular the potential role of epigenetic controls in coordinating the global suppression of transcription. Hibernation is characterized by long periods of deep torpor (when core body temperature drops to near ambient) that are interspersed with brief arousal...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of proteome research
دوره 14 11 شماره
صفحات -
تاریخ انتشار 2015